
Oncotarget1884www.impactjournals.com/oncotarget

www.impactjournals.com/oncotarget/                   Oncotarget, 2017, Vol. 8, (No. 1), pp: 1884-1912

Circulating and disseminated tumor cells: diagnostic tools and 
therapeutic targets in motion

Hongxia Wang1,*, Nikolas H. Stoecklein2,*, Peter P. Lin3 and Olivier Gires4,5

1 Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. 
China
2 Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University 
Düsseldorf, Düsseldorf, Germany
3 Cytelligen, San Diego, California, USA
4 Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University 
of Munich, Munich, Germany
5 Clinical Cooperation Group Personalized Radiotherapy of Head and Neck Tumors, Helmholtz, Germany
* These authors have contributted equally to this work

Correspondence to: Hongxia Wang, email: whx365@126.com

Correspondence to: Olivier Gires, email: olivier.gires@med.uni-muenchen.de
Keywords: CTCs, DTCs, metastases, EpCAM, MICs
Received: April 25, 2016 Accepted: September 20, 2016 Published: September 24, 2016

ABSTRACT
Enumeration of circulating tumor cells (CTCs) in peripheral blood with the 

gold standard CellSearchTM has proven prognostic value for tumor recurrence and 
progression of metastatic disease. Therefore, the further molecular characterization 
of isolated CTCs might have clinical relevance as liquid biopsy for therapeutic 
decision-making and to monitor disease progression. The direct analysis of systemic 
cancer appears particularly important in view of the known disparity in expression 
of therapeutic targets as well as epithelial-to-mesenchymal transition (EMT)-based 
heterogeneity between primary and systemic tumor cells, which all substantially 
complicate monitoring and therapeutic targeting at present. Since CTCs are the 
potential precursor cells of metastasis, their in-depth molecular profiling should also 
provide a useful resource for target discovery. The present review will discuss the 
use of systemically spread cancer cells as liquid biopsy and focus on potential target 
antigens.

INTRODUCTION

Metastasis is the major cause of cancer-related 
death [1]. Growing evidence supports the notion that 
locally invading, blood-borne circulating tumor cells 
(CTCs) and disseminated tumor cells (DTCs) in bone 
marrow and lymph nodes are precursors of recurrent 
tumors and metastases. So far, the development of targeted 
therapies was mostly fueled by knowledge related to 
primary tumor biology and, currently, around one dozen 
therapeutic antibodies and 28 different inhibitors are 
in clinical application, targeting essentially the tumor 
antigens HER2, EGFR, EpCAM, BRAF and VEGF [2-
5]. These therapeutic agents have been primarily approved 
for late stage advanced disease with recurrent tumors 
and/or distant metastases [2-4]. Owing to technical and 
study limitations, the above mentioned therapeutics are 

barely in use to target (occult) precursors of recurrence 
and metastases in first-line therapies. In fact, currently 
available therapeutic agents are generally applied when 
cellular precursors have already deployed their capacities 
and disease has progressed. Nevertheless, efforts to 
enumerate occult systemic cancer cells and to transfer 
molecular therapies to earlier, less progressed stages of 
disease have been undertaken in breast cancer [6-9], which 
hopefully represents a trailblazer for other entities.

In order to change treatment regimens towards 
more effective suppression of metastasis, two aspects 
are paramount. Firstly, a more accurate staging including 
diagnosis of the systemic disease is mandatory, in order 
to define patients at increased risk to relapse and/or 
to develop metastases. Such diagnostics must detect 
clinically occult systemic cancer that is currently not 
assessable by routine diagnostics. In our opinion, CTCs 
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and DTCs appear to be good candidates to achieve this 
aim. Secondly, reliable and validated assays for detection 
and molecular analysis of CTCs/DTCs are required in the 
therapeutic context, which is currently very challenging 
in the adjuvant situation. The technologies required for 
such molecular characterization of CTCs and DTCs 
should optimally enable not only assessment of known 
therapeutic targets, e.g. HER2, EGFR, and EpCAM, but 
also comprehensive profiling to identify novel therapeutic 
targets. Such molecular staging becomes even more 
important in the adjuvant situation in light of reported 
discordances in expression patterns of several therapeutic 
targets in primary tumors versus CTCs and DTCs [10-14]. 
It appears therefore mandatory, to determine the exact 
target expression in systemic cancer cells to select the 
correct adjuvant therapy in the non-metastatic, high-risk 
situation in the context of precision medicine.

In the present review, we will discuss advantages 
and challenges related to CTCs and DTCs as diagnostic 
tools and therapeutic targets in motion. We will 
briefly summarize knowledge on enumeration and 
characterization, and extend on potential molecular targets 
on the cells of systemic cancer.

CTCS AS LIQUID BIOPSIES

Reliable biomarkers for molecular staging of disease 
progression and risk evaluation of carcinomas have, as yet, 
entered clinical routine only for a subset of tumor entities, 
such as the PSA protein in prostate cancer. In this context, 
CTCs could play a role as “liquid biopsy” through their 
direct molecular characterization to obtain comprehensive 
“on-line” information on the extent and the molecular 
phenotypes of systemic cancer [12, 15-20]. In the 
metastatic situation, CTCs have prognostic significance 
in various tumor entities (Table 1). In a large cohort of 
non-metastatic primary breast cancer patients (n = 3173), 
one or more CTCs were found in approximately 20% 
of individuals at the time of first diagnosis and strongly 
correlated with larger tumors, nodal involvement, and poor 
disease outcome [21]. Hence, CTCs are also detectable in 
the adjuvant, non-metastatic situation, although at reduced 
rates and numbers, and have prognostic impact.

Compared to CTCs, DTCs are further advanced 
cancer cells since they have already settled in distant 
organs such as the bone marrow or lymph nodes [22]. As 
such, DTCs might harbor valuable information concerning 
the metastatic potential of the disease and deserve 
therefore intensive analyses of associated antigens, 
which might represent therapeutic targets. For example, 
expression of EpCAM on DTCs of esophageal cancer 
patients was restricted compared to primary tumors, but 
correlated with lymph node involvement and remarkably 
poor outcome [10]. It must be noted however, that in 
comparison to CTCs, the detection of DTCs is more 
invasive, given the need for bone marrow puncture or 

surgery in case of lymphatic DTCs. For these reasons, 
longitudinal monitoring of DTCs is barely possible for 
routine clinical applications.

In the metastatic situation, CTC-based liquid 
biopsies might not only identify the right patients for more 
effective therapies but could help avoid futile treatment 
in de novo resistant cancers. Few initial experiments 
suggested that short-term in vitro expansion and testing 
of metastatic breast cancer CTCs permits prediction 
of the patient´s response to drugs [23, 24]. But it is 
important to cautiously note that such short term CTC 
cultures are far from being validated clinical applications. 
Given the extremely few publications in this field and 
the numerous groups world-wide working on CTCs, 
it is obviously very difficult to establish reliable CTC 
culture systems. However, besides their enumeration, 
distinct molecular characteristics of CTCs were reported 
to predict recurrence and treatment response [25]. For 
example, more mesenchymal CTCs were associated 
with disease progression and treatment resistance in 
metastatic breast cancer [25], which is in line with the 
recently discovered function of EMT in chemoresistance 
in mouse models of metastatic breast and pancreatic 
cancer [26, 27]. Comparably, CTCs in prostate cancer can 
display androgen receptor (AR) expression and signaling 
transitions that could provide valuable information for 
second-line therapy with adequate inhibitors [28].

In the adjuvant, non-metastasized situation, 
enumeration of CTCs also has prognostic significance 
and indicates patients with risk for systemic progression 
[21, 29-31], with the potential to improve therapy and 
patient care. For instance, the increase of selected, 
more aggressive CTC phenotypes in patients clinically 
staged N0/M0 could represent a rationale for enhanced 
adjuvant treatment to prevent recurrence and metastases. 
As example, the presence of CTCs in locally advanced 
head and neck cancer patients after chemotherapy was 
predictive of poor survival except for oropharyngeal 
cancers, suggesting that CTCs have the potential to define 
patients who would profit from intensified therapy [32, 
33]. Here, molecular staging could help to decide upon the 
timing to change or reinforce radiation and tailor systemic 
therapy regimens. 

Pre-clinical and clinical trials including CTCs 
and DTCs for various clinical purposes are underway 
and address CTC enumeration as well as molecular 
characterization of a plethora of antigens (Table 1 and 2). 
For example, the potential of CTC numbers as a criterion 
for treatment decisions was addressed in the prospective 
randomized SWOG S0500 trial [34]. CTC counts 
were used to stratify metastatic breast cancer patients 
for continued standard therapy or for a treatment arm 
composed of an alternative chemotherapy. Unfortunately, 
the CTC-informed alternative chemotherapy had no 
beneficial effect on OS and PFS [34]. This negative 
result might be explained by selectivity issues of the 
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Table 1: Current molecular markers for the identification and therapeutic targeting of CTCs and DTCs in solid 
cancers
Biomarker Expression rate Drug Description
Markers for CTCs

EpCAM 37-42.3% Panorex, MT201, MT101, ING-1

• FDA-approved CellSearchTM system depends on EpCAM-
specific capturing of CTCs in various cancers [21, 30, 47, 
49, 125, 127, 258-262]

• Loss of EpCAM on CTCs as a result of dynamic phenotypic 
changes during EMT[11, 35, 150, 151, 263]

CD44 35.2% Pan-CD44 antibody H90 • CD44 expression in CTCs of HNSCC, breast, gastric and 
endometrial cancer patients [46, 264-268]

ALDH1 17.7-80% ATRA, DEAB • ALDH1 expression in CTCs of breast, non-small cell lung 
and endometrial cancer patients [36, 264, 266, 267, 269]

CD133 83% CART133 chimeric antigen receptor 
(CAR) T cells

• Expression of the cancer stem cell marker CD133 in 
CTCs of metastatic breast, colon, colorectal, renal cell, 
hepatocellular and non-small cell lung cancer patients [266, 
269-275]

FGF2 n.a. Dovitinib, Pentraxin-3 • Frequent secretion of FGF2 by CTCs in pM1-staged 
prostate cancer [276]

KRT7, KRT18, KRT19 46.9% Anti-KRT19 antibody HPA002465
• KRT7, 18 and 19 expression in CTCs from ovarian, gastric 

and gastroesophageal cancer patients [277, 278]
• Used for therapy monitoring of advanced NSCLC and 

breast cancer[279]

c-Met+/CD47+ 0.8-33.3% Hu5F9-GA, ARG 197

• CD44/c-Met/CD47 CTCs from breast cancer patients 
display metastatic potential [46]

• c-Met+/CD47+ CTCs as novel independent prognosticator 
of OS in luminal breast cancer [154, 236]

• c-Met as a capture antigen for CTCs and as a therapeutic 
target [237, 238, 280]

• CD47 expression on CTCs of colorectal cancer [239, 281]

HER2 7.9-35.9% Herceptin, Pertuzumab, Lapatinib, 
Trastuzumab-mertansine (T-DM1)

• HER2 expression on CTC of metastatic breast, non-small 
cell lung, gastric, gastrointestinal, ovarian cancer [12, 13, 
36, 119, 178, 189, 282]

• Anti-HER2 therapy to address HER2-positive CTCs [283]
• HER2 is part of the signature of breast cancer CTCs 

competent for brain metastases [284]

EGFR 18-56% Cetuximab, Afatinib, Erlotinib, 
Gefitinib, Panitumumab

• EGFR expression on CTCs of colorectal, prostate, non-
small cell lung, gastric, head and neck, and breast cancer 
[32, 36, 121, 210, 283, 285-288] 

• Treatment resistance T790M EGFR mutation in CTCs of 
non-small cell lung cancer [289]

• Lapatinib treatment of metastatic breast cancer patients with 
EGFR-positive CTCs [290]

• EGFR is part of the signature of breast cancer CTCs 
competent for brain metastases [284]

MUC1/16 28.1-90% ASI402 • Expression of mucin 1 and 16 in CTCs from ovarian cancer 
patients [277]

HPSE n.a. PI-88
• Breast cancer CTCs express heparanase [291]
• HER2/EGFR/HPSE/Notch1-positive breast cancer CTCs 

have brain metastastic potential [284]

Androgen receptor 16.3-18% Bicalutamide, Flutamide

• Nuclear expression of androgen receptor splice variant 7 
protein in CTCs of metastatic castration-resistant prostate 
cancer is a treatment-specific biomarker that is associated 
with superior survival on taxane therapy over ARS-directed 
therapy [288, 292]

Telomerase n.a. Imetelstat
• Telomerase activity on CTC of metastatic prostate cancer is 

a prognostic marker [293]
• Telomease-sensitive adenovirus as diagnostic and 

therapeutic tool against CTCs in various cancer [294, 295]

Vimentin 32.3% Withaferin-A, Silibirin, Quercetin • Decrease OS of castration-resistant prostate cancer patients 
with vimentin/ki-67-positive CTCs [296]

Ki-67 20.8-45.1% n.a. • Ki67 expression in CTCs of metastatic breast cancer [297, 
298]

M-30 10-76.63% M30 CytoDeath™ ELISA
• Apoptosis-related fragment of keratin 8 generated by 

caspases
• Metastatic disease is associated with lower numbers of 

apoptotic CTCs [299]

TWIST1 n.a.
Curcumin, SFN, Quercetin, 
CADPE, Moscatilin, NAC, BMP7, 
Claudins

• TWIST1 is expressed in CTCs of breast cancer patients 
along with further EMT and stem cell markers [269]

uPAR n.a. PAI-1, anti-uPAR antibody 10G7, 
WX-UK1, Mesupron

• Expression of uPAR on subsets of CTCs in metastasized 
breast cancer [300]

• Co-amplification of HER2 and uPAR in CTCs of breast 
cancer [301]
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CellSearch™ system [35], heterogeneity of CTCs 
[11, 35, 36], general resistance to chemotherapy, and 
eventually - and most likely - the choice of the alternative 
chemotherapy. Beyond that one first trial, enumeration 
of CTCs (also with CellSearch™ system) could be still 
predictive in a different clinical setting and several trials 
are currently ongoing to further investigate these aspects 
[15] (Table 2). First pilot phase results of the international 
EORTC 90091-10093 Treat CTC, phase 2 proof-of-
concept trial (NCT01548677) have been disclosed very 
recently [37]. Here, CTCs are monitored in form of liquid 
biopsy in HER2-negative breast cancer patients (adjuvant 
and neo-adjuvant situation). Patients with detectable CTCs 
after radio-chemotherapy are stratified to an observational 
arm and a treatment arm, implementing the anti-HER2 
antibody Trastuzumab [37]. So far, 11% of patients (n 
= 350) had detectable, treatment-resistant CTC after 
standard adjuvant treatment, out of which 26 patients 
(7.4%) have been randomized to either study arm. Results 
related to the efficacy of Trastuzumab to eradicate CTCs 
and clinical endpoints such as recurrence-free survival, 
invasive DFS, DFS and OS are expected two years after 

the last patients will have been randomized [37].
While the discussed increasing trial activity testing 

CTC-based liquid biopsy in metastasized patients is 
encouraging, a comprehensive transfer to the adjuvant 
situation is missing. The major bottleneck here is the rarity 
of CTCs in the M0 situation and the low blood volume ( < 
10 mL) usually investigated, insufficient to reliably detect 
the few CTCs present [15, 16, 19, 20, 38]. A potential 
solution to overcome this problem might be the use of 
diagnostic leukapheresis (DLA), which enables density-
based pre-enrichment from large blood volumes (liters) 
and thereby the screening of liters of blood for CTCs [39]. 
However, this approach must be validated in larger cohorts 
with respect to feasibility and prognostic value [15, 39].

Alternative to CTC/DTC based liquid biopsies, 
circulating tumor DNA (ctDNA) has been extensively 
investigated for diagnostic and prognostic purposes 
[40]. ctDNA is released into the circulation by tumor 
cells following apoptosis and necrosis, and represent a 
comparably simple tool for the analysis of systemic disease 
[41, 42]. ctDNA isolation can be performed from serum 
and blood plasma, requires less sophisticated technologies 

Markers for DTCs
CD44 33-100% Pan-CD44 antibody H90 • CD44 expression on most breast cancer DTCs [302]

Survivin n.a. ISIS23722, EM-1421 • Survivin expression in bone marrow-resident DTCs in 
colorectal cancer [303]

TWIST1 31%
Curcumin, SFN, Quercetin, 
CADPE, Moscatilin, NAC, BMP7, 
Claudins

• TWIST1 expression in bone marrow-resident DTCs in non-
metastatic breast cancer [304, 305]

uPAR 58% PAI-1, anti-uPAR antibody 10G7, 
WX-UK1, Mesupron

• uPAR expression on DTCs of localized prostate cancer is an 
adverse prognostic marker [306]

Thomsen-Friedenreich 
antigen 98% JAA-F11 • Thomsen-Friedenreich antigen is expressed on bone 

marrow-resident breast cancer DTCs [307]

HER2 43% Herceptin, Pertuzumab, Lapatinib, 
Trastuzumab-mertansine (T-DM1)

• HER2 expression on DTCs in breast, ovarian and 
esophageal cancer [67, 282, 308]

• Gain of HER2 expression in esophageal cancer DTCs 
confers high risk of early death [67]

• HER2 expression on breast cancer DTCs as a prognostic 
marker for OS and PFS [309-311]

• 52% concordance of HER2 expression on primary tumor 
and DTCs in patients with early breast cancer [312]

EGFR 15-88% Cetuximab, Afatinib, Erlotinib, 
Gefitinib, Panitumumab

• EGFR expression on breast, colorectal and gastrointestinal 
cancer DTCs [313-315]

• Cancer-specific EGFRvIII mutant as a marker of breast 
cancer DTC [316]

• EGFR and FGF2 promote amplification of DTCs
FGF2 n.a. Dovitinib, Pentraxin-3
NUAK1 n.a. WZ4003

• Differential expression of NUAK1, PIN4, MALT1, and 
CDC25B in single prostate cancer DTC defines dormant 
subtypes .[317]

PIN4 n.a. Anti-PIN4 antibody EPR10033
MALT1 n.a. EP603Y
CDC25B n.a. Anti-CDC25B antibody S353

CEA 0-84% n.a. • CEA expression on breast, colorectal, and gastric cancer 
DTCs [315, 318, 319]

EpCAM 28.5- Panorex, MT201, MT101, ING-1

• Expression of EpCAM on non-small cell lung, breast, 
rectal, ovarian, prostate cancer DTCs [176, 317, 320-324]

• EpCAM-positive DTCs as therapeutic targets [323]
• Frequent loss of EpCAM expression on bone marrow-

resident DTCs in esophageal cancer patients [10]

MUC: mucin; ALDH1: aldehyde dehydrogenase isoform 1;CD47: cluster of differentiation 47; EGFR: epidermal growth 
factor receptor; FDA: food and drug administration; EMT: epithelial-mesenchymal transition; mCRPC: metastatic castration 
resistant prostate cancer; HPSE; N-acetylcysteine, NAC; Caffeic acid 3,4-dihydroxy-phenethyl ester; uPAR: urokinase-type 
plasminogen activator receptor; MRD: minimal residual disease; CEA:carcinoembryonic antigen.
n.a.: not applicable.
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Table 2: Selection of ongoing trials related to CTCs of solid tumors. (According:https://clinicaltrials.gov/; assessment 
date:08/11/2016)
ClinicalTrials.gov 
Identifier Title/study No of 

patients Time period Primary endpoints Cancer type

CTCs as biomarkers or therapeutic targets

NCT01548677
Trastuzumab in HER2-negative Early 
Breast Cancer as Adjuvant Treatment for 
Circulating Tumor Cells (CTC) ("TREAT 
CTC" Trial)  

2175 Apr 2013- Dec 2018 CTCs detection Breast cancer

NCT01619111

DETECT III - A Multicenter, 
Randomized, Phase III Study to Compare 
Standard Therapy Alone Versus Standard 
Therapy Plus Lapatinib in Patients With 
Initially HER2-negative Metastatic Breast 
Cancer and HER2-positive Circulating 
Tumor Cells

120 Feb 2012-Mar 2018 CTC clearance rate Breast cancer

NCT01975142

Validity of HER2-amplified Circulating 
Tumor Cells to Select Metastatic Breast 
Cancer Considered HER2-negative 
for Trastuzumab-emtansine (T-DM1) 
Treatment.

480 Oct 2013-Nov 2016
Tumor response rate to 
T-DM1 in patients with 
HER2 amplified CTCs

Breast cancer

NCT01349842

CirCe01 Study: Evaluation of the Use 
of Circulating Tumour Cells to Guide 
Chemotherapy From the 3rd Line of 
Chemotherapy for Metastatic Breast 
Cancer

568 Jan 2010-Jan 2018 OS Breast cancer

NCT00382018
S0500 Treatment Decision Making 
Based on Blood Levels of Tumor Cells 
in Women With Metastatic Breast Cancer 
Receiving Chemotherapy

651 Oct 2006-May 2017 OS, PFS Breast cancer

Predictive, diagnostic and prognostic value of CTCs

NCT02610764
Pilot Study: Resectable Esophageal 
Adenocarcinoma and the Relevance of 
CTC (ESO-CTC)

20 Nov 2015-Dec.2017 Changes of CTC 
numbers Esophageal cancer

NCT02035813

DETECT IV - A Prospective, Multicenter, 
Open-label, Phase II Study in Patients 
With HER2-negative Metastatic Breast 
Cancer and Persisting HER2-negative 
Circulating Tumor Cells (CTCs).

520 Jan 2014-Dec 2019 PFS Breast cancer

NCT01322893
Enumeration and Molecular 
Characterization of Circulating Tumor 
Cells in Women With Metastatic Breast 
Cancer

150 Mar 2011-Dec 2016 CTC numbers Breast cancer

NCT02626039
Characterization & Comparison of 
Drugable Mutations in Primary and 
Metastatic Tumors, CTCs and cfDNA in 
MBC patients (MIRROR)

40 Nov 2013-Dec 2016
Mutations and genomic 
alterations in primary 
tumor tissue and 
metastases

Breast cancer

NCT02119559

Assessment of Circulating Tumor Cells as 
an Early Predictive Marker of Response 
to a First Line Treatment Based on an 
Anti-Human Epidermal Growth Factor 
Receptor (HER), Cetuximab, in Patients 
With Inoperable Recurrent and/or 
Metastatic HNSCC.

115 Sep 2012-Mar 2018 Predictive value of CTCs 
on PFS

Head and neck 
squamous cell 
carcinoma

NCT02554448
Detection of CTCs in Stage III Rectal 
Cancer Patients Undergoing Neoadjuvant 
Therapy

80 Jan 2016-Dec 2016 CTC numbers Rectal cancer
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and is less cost intense. For instance, cancer personalized 
profiling by deep sequencing (CAPP-Seq) was applied for 
the case of non-small cell lung cancer and demonstrated 
the presence of ctDNA in 100% of stage II-IV patients and 
50% of stage I patients [43]. ctDNA levels correlated with 
tumor burden and outperformed radiographic approaches 
with respect to treatment response assessment [43]. As 
such, ctDNA analysis might represent a complementary 

tool to the CTC analysis [44, 45]. Despite obvious 
advantages of simplicity for the isolation and analysis 
through standardized deep-sequencing methods, ctDNA 
clearly harbors several drawbacks compared to the 
enumeration and characterization of CTCs and DTCs. 
While ctDNA-based diagnostic is currently closer to 
clinical routine use, CTCs and DTCs allow the analyses 
at genomic, transcriptomic, and proteomic levels, whereas 

NCT01596790

Assessment by EPISPOT of Circulating 
Tumor Cells as an Early Predictive 
Marker of Response to Chemotherapy 
and Targeted Therapy in Patients With 
Metastatic Colorectal Cancer in First Line 
of Treatment

168 Apr 2012-Apr 2016 Predictive value of CTCs 
on PFS Colorectal Cancer

NCT01848015
Prediction of Recurrence in Advanced 
Gastric Cancer After Radical Resection 
by Circulating Tumor Cells (CTCs)

200 Jun 2013-Jul 2016 CTC as predictive 
marker for recurrence Gastric cancer

NCT01625702
Clinical Significance of Circulating 
Tumor Cells (CTCs) in Blood of Patients 
With Advanced/Metastatic Gastric Cancer

100 Jun 2012-Dec 2015 CTC as prognostic 
marker Gastric cancer

NCT02072616
Detection of Circulating Tumor Cells 
for the Diagnostic of Pancreatic 
Adenocarcinoma

142 Sep 2014-Sep 2021 Sensitivity of CTCs as 
diagnostic marker Pancreatic cancer

NCT02451384
Comparison of the Influences of Different 
Methods to Remove the Pancreatic Ductal 
Adenocarcinoma on the Detection of 
Circulating Tumor Cells

45 Jul 2015-Dec 2016
CTCs between the pre 
and post-operation in 
each study arm

Pancreatic ductal 
adenocarcinoma

NCT02155426

A Multicenter, Prospective, Observational 
Trial on the Prognostic and Dynamic 
Change of CTC Enumeration in 
Advanced NSCLC With 1st or 2nd Line 
Chemotherapy and Targeted Therapy

1200 Apr 2014-Dec 2016 Baseline CTC count Non-small cell lung 
cancer

NCT02407327

Individualized Treatment of Patients With 
Advanced NSCLC: Potential Application 
for Circulating Tumor Cells (CTC) 
Molecular and Phenotypical Profiling 
(2012/52)

150 Dec 2013-Dec 2017
Percentage of CTC-
positive patients and 
total CTC numbers

Non-small cell lung 
cancer

NCT02500693
Circulating Tumor Cells and Early 
Diagnosis of Lung Cancer in Patients 
With Chronic Obstructive Pulmonary 
Disease

600 Nov 2015-Dec 2019 CTC detection rate Lung cancer

NCT02372448

Multicenter Validation of the Sensitivity 
of Theranostic ALK Rearrangement 
Detection by FISH Analysis and 
Prevalence of Escaping Mutations in 
Circulating Tumor Cells for the Non-
invasive Management of Lung Cancer 
Patients

224 Jul 2014-Jul 2016
Sensitivity and 
specificity of the FISH 
technique in CTC 
assessment

Lung cancer

NCT02666612
Measurement and Characterization 
of Circulating Endothelial Cells or 
Circulating Tumor Cells in Adult Patients 
With Metastatic Cancer

1000 Aug 2008-Aug 2020 CEC and CEP rate Metastatic cancer

NCT01961713
Circulating Tumor Cell Analysis in 
Patients With Localized Prostate Cancer 
Undergoing Prostatectomy

200 Apr 2010-Apr 2019 CTC numbers Prostate cancer

PFS: Progression Free Survival; OS: Overall Survival CEC: circulating endothelial cells; EPC: endothelial progenitors cells
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ctDNA analysis remains restricted to genomic alterations. 
Furthermore, CTCs and DTCs can be further studied in 
vitro for resistance traits [23, 24] and in vivo in animal 
models for their metastatic capacity [46]. Thereby, the gain 
of knowledge acquired through the analysis of CTCs and 
DTCs is incomparably more comprehensive. Thus, CTCs 
(and possibly DTCs) represent superior candidates for 
liquid biopsy since they have the potential to reflect disease 
progression and therapy response at multiple biological 
levels [25, 47-53]. However, substantial challenges remain 
in efficient enrichment, detection, and isolation of CTCs 
due to potential loss of capture antigens during EMT [11, 
15, 16, 35, 54-57], in usage as liquid biopsy owing to the 
small volumes of peripheral blood currently analyzed [15, 
19, 58], in genetic and molecular profiling to enhance our 
knowledge of the metastatic cascade [22, 59-69], and in 
therapeutic targeting at the earliest time points to attack 
the very cells possibly responsible for lethal metastases 
[16, 20, 57, 70-81].

CTCS AND DTCS AS PRECURSORS OF 
METASTASES: HINTS AND EVIDENCE

So far, the true metastatic potential of CTCS 
remains largely unclear. The metastatic cascade is initiated 
by detachment from primary tumors, local invasion and 
intravasation into the blood. When the invasive cancer 
cells become blood-borne they are called CTCs. After 
extravasation at secondary sites, the cancer cells can settle 
and are then termed DTCs (Figure 1) [54, 70, 71, 82-84]. 
The actual time point of the metastatic spread remains a 
highly interesting question. Does the metastatic cascade 
represent a late process requiring dissemination of fully 
malignant cells from locally advanced tumors or is it the 
result of early spread of distinct cells that undergo co-
evolutionary changes parallel to the primary tumor [22, 
61, 69, 85]? Malignant cells that are less changed by 
evolutionary developments within the primary tumor but 

Figure 1: Schematic representation of tumor progression. Primary carcinomas are induced through multiple mutations and the 
outgrowth of malignant cells in situ. Upon epithelial-to-mesenchymal transition (EMT) cells acquire migratory and invasive traits, detach 
from primary tumors and locally invade surrounding tissue. In a next step, locally invading cells gain access to blood or lymph vessels 
through intravasation and become circulating tumor cells (CTCs). After extravasation, CTCs settle in novel organs/sites and are termed 
disseminated tumor cells (DTCs), which can give rise to micro- and macrometastases in various organs.
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rather have to adapt “on site” in a new micro-environment 
might be more capable of metastases formation [63, 69, 
86]. Whichever theory is eventually correct (most likely 
both scenarios can occur in cancer patients and can explain 
the different individual courses of disease), the general 
assumption is that the process of metastases formation is 
poorly efficient. 

Data on a direct contribution of CTCs and DTCs 
to metastases formation remains scarce up to now, but 
the few available data indicate that CTCs and DTCs are 
indeed metastatic precursors and therefore direct targets 
for systemic therapy. In breast cancer patients, presence 
of DTCs at the time point of primary tumor diagnosis 
or following systemic treatment strongly correlated with 
metastasis at distant sites [84, 87]. Proof of a tumorigenic 
potential of DTCs came from cell lines generated from 
micrometastatic DTCs from lymph nodes of patients 
suffering from esophageal cancers, which generated 
tumors in immune-compromised SCID mice [88]. Direct 
evidence for a tumorigenic potential of CTCs came from 
metastatic breast cancer [46] and aggressive small cell 
lung cancer (SCLC) [89] that is characterized by early 
dissemination and utterly poor prognosis.

Seminal proof of a metastatic potential of 
circulating cells was recently published for luminal 
breast cancer, formally demonstrating the existence of 
metastasis-initiating cells (MICs) amongst CTCs [46]. 
Intrafemoral injection of a minimum of > 1,000 human 
CTCs into immune-compromised NSG mice induced 
the development of bone, lung and liver metastases with 
a latency time to disease of 6-12 months. Taking into 
account that values of > 5 CTCs per 7.5mL of blood 
showed prognostic correlation with poor survival of breast 
cancer, these patients would display an approximated 
total load of > 3,500 CTCs in circulation and theoretically 
surmount thresholds required for metastases formation in 
mouse models. Obviously these calculations are rough 
estimations and extrapolate numbers from animal models 
to human disease. In fact, only four out of 106 patients 
analyzed complied with the above mentioned requirements 
of > 1000 CTCs per injection, out of which CTCs from 3 
patients actually generated metastases [46].

Metastatic potential is highly enriched in clusters 
of CTCs present in the blood of patients. In metastatic 
breast cancer, oligoclonal clusters are held together 
through plakoglobin-activated adhesion and harbor 
> 20-fold increased metastatic potential compared to 
single cell CTCs [90]. Hence, metastatic breast cancer 
CTCs comprise subpopulations with metastatic potential, 
however efficiency and frequency of MICs appear 
slight or can not be properly monitored with the current 
experimental tools.

Subcutaneous xenotransplantation of CTCs from 
distantly metastasized small-cell lung cancer patients into 
NOD-SCID-IL2-receptor gamma chain deficient (NSG) 
mice induced tumor formation. Four out of six samples of 

CTCs generated palpable tumors in a time range of 2.4-4.4 
months and reflected the patient’s response to platinum and 
etoposide [89]. Numbers of CTCs inoculated (20-1,625) 
correlated with the time to generate palpable tumors and 
> 400 CTCs per 7.5mL of blood were required for tumor 
formation in xenotransplants. Additionally, circulating 
tumor cell-derived xenografts (CDX) from SCLC also 
induced the formation of distant metastases in lungs and 
brains of mice, hence demonstrating a metastatic potential. 
Importantly, CTCs and CDXs from individual patients 
shared genomic alterations, but displayed intratumoral 
and especially intertumoral heterogeneity [89]. Such 
heterogeneity is clinically relevant given its impact on 
treatment, chemoresistance, dissemination and metastases 
formation in breast cancer [24, 25] and non-small cell lung 
cancer [91]. 

The abovementioned studies demonstrated 
formally that CTCs are tumorigenic and metastatic, 
confirming the assumed importance of CTCs in disease 
progression. Because CTCs can preserve morphological 
and genetic characteristics of primary tumors and 
faithfully recapitulate responses of donor patients to 
chemotherapeutic agents, they represent a means to 
develop precision medicine strategies based on routinely 
monitoring molecular features of CTCs. In this context, 
CDXs become a major tendency as an alternative to PDXs, 
especially when tumors were inaccessible or difficult to 
biopsy [92].

It appears sensible to consider targeting of CTCs as 
a reservoir for MICs, but formal proof of the existence 
and metastatic potential of MICs is required for additional 
tumor entities to fortify this concept. Targeting CTCs/
DTCs as precursors of metastases might be further 
complicated by plasticity and substantial heterogeneity 
observed not only in primary tumors but also in systemic 
cancer cells [25, 89, 93-98]. Metastatic potential could 
either be inherent to subclones of cells present in the 
primary tumor and/or be acquired by subsets of cells 
through mutations, epigenetic and transcriptional 
modeling of gene expression profiles [62, 68, 85, 99, 
100], even at very early disease stages [61]. From a 
therapeutic point of view, targeting of CTCs and DTCs 
should concentrate on subsets with (regained) proliferative 
capacity as targets of chemotherapy and adjuvant immune-
therapy. Here, the actual presence of target antigens for 
therapeutic antibodies must be thoroughly evaluated. 
In a second approach, induction of exit of dormancy in 
order to achieve sensitization for chemo- and radiotherapy 
[101] and inhibition of the switch from dormancy to 
proliferation [102] are valuable approaches to inhibit 
the outgrowth of MICs [103-106]. In this respect, it is 
of interest that the microenvironment present in bone 
marrow contributes to the regulation of tumorigenic traits, 
either silencing tumor cells into dormancy or re-activating 
them to circulate and proliferate. In breast cancer, tumor 
dormancy can be observed even up to decades before the 
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Figure 2: Dynamic expression of EpCAM in tumor progression. EpCAM expression in normal mucosa is commonly restricted 
to cells of the suprabasal layers. During tumor formation through sequential mutations, EpCAM expression is frequently increased in cells 
of primary carcinomas. Circulating and disseminated tumor cells (CTCs/DTCs) display mixed expression patterns with retained or lost 
expression of EpCAM. Macrometastases is often characterized by strong expression of EpCAM, which is similar to the corresponding 
primary tumor. DTC immunofluorescence pictures displaying EpCAM status were taken with permission from [10].
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outgrowth of overt metastases. For example, perivascular 
endothelial cells induce dormancy of breast cancer 
cells through the release of thrombospondin 1, whereas 
sprouting neo-vasculature accelerates cancer cell growth 
[106]. Hence, understanding initiation and regulation of 
tumor dormancy is yet another level of complexity and 
probably the furthest away from clinical application.

DIRECT ANALYSIS OF SYSTEMIC 
CANCER FOR EFFICIENT TREATMENT 

Molecular targets for cancer such as HER2, EGFR, 
EpCAM, VEGF, amongst others, have been defined 
in primary tumors and, selectively, in systemic cancer 
cells (Table 1). However, most cancers show marked 
intra- and inter-patient heterogeneity due to evolution 
of different clones and evolutionary changes to adapt to 
novel microenvironments [96, 99, 107-110]. As a result, 
measurement of molecular targets in primary tumors 
is insufficient to predict efficacy of adjuvant therapies 
because expression patterns in primary tumors are not 
systematically conforming those of CTCs and DTCs [111, 
112]. Despite a frequent resemblance of antigen profile 
between primary tumors and metastases [113, 114], 

differences in gene and protein expression occur [115-
118]. Breast cancer metastatic cells have for example been 
shown to re-express E-cadherin and catenins as opposed 
to the cognate primary tumors [116]. As a result, antigen-
positive primary tumors can give rise to antigen-negative 
CTCs and DTCs, and vice versa, or to the expression of 
mutated antigen variants as was shown for EGFR and 
HER2 [10, 11, 13, 25, 35, 119-121]. Hence, patients with 
antigen-positive primary tumors might remain unaffected 
by antibody therapy owing to a lack of antigen on CTCs 
and/or DTCs, while patients with antigen-negative 
primary tumors but antigen-positive CTCs and/or DTCs 
will not be quoted as eligible for therapy. Thus, analysis 
of molecular markers should be conducted in primary 
tumors and repeatedly in liquid biopsies to thoroughly 
support decisions on therapeutic approaches. Optimally, a 
panel of markers with associated therapeutic agents should 
be included in such analyses. Beyond that, unbiased 
molecular characterization of CTCs, DTCs and metastases 
at the genetic and protein level will help to find new targets 
for improved therapy of systemic cancer [14-16, 19, 21, 
48, 51, 52, 54, 57, 58, 64, 67, 68, 71, 73, 85, 86, 109, 
122-128]. However, it must be noted that the technical 
requirements for the application of comprehensive liquid 

Figure 3: Therapeutic options in targeting CTCs and DTCs. After initial diagnosis, patients eligible for operation undergo 
surgical resection of the primary tumors in combination with chemo- and radiation therapy. Resection margins should be controlled through 
novel, sensitive techniques including probe-based confocal laser endomicroscopy (pCLE) to assure complete withdrawal of tumors. 
Routinely, the expression of therapeutic target antigens such as e.g. EGFR, EpCAM and PD-L1 should be assessed in order to improve 
adjuvant therapy through adequate stratification. Simultaneously, blood draws will serve to assess CTC numbers and to perform molecular 
characterization of the expression of therapeutic antigens. CTC enumeration will be implemented into decisions concerning adjuvant 
chemo- and radiation therapies. Molecular profiling of CTCs will allow for the determination of the application of novel therapeutic 
antibodies and small molecule inhibitors.
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biopsies in clinical routine, especially in the adjuvant 
situation with all its restrictions, are not yet achieved.

CURRENT MOLECULAR TARGETS

A recent analysis of cell surface markers of 
metastatic breast cancer-derived MICs as described 
by Baccelli et al. revealed the expression of epithelial 
marker EpCAM, hyaluronic acid receptor CD44, integrin 
associated protein CD47 and hepatocyte growth factor 
receptor c-Met as a signature for MICs [46]. EpCAM is 
generally used as anchor protein to enrich CTCs in various 
approaches [47, 129], CD44 is a marker for cancer stem 
cells in numerous tumor entities [130] including breast 
cancer [131], and is involved in metastases formation 
[132, 133], while CD47 and c-Met had been linked to 
recurrence and an invasive program of tumor cells [134, 
135]. The frequency of CD44/CD47/c-Met triple-positive 
EpCAM-expressing CTCs increased by almost two-fold 
following disease progression and numbers of triple-
positive CTCs were associated with higher metastatic 
burden, whereas simple enumeration of EpCAM-positive 
CTCs was not [46]. Hence, it can be assumed that these 
markers of breast cancer MICs provide cells with signals 
required for metastases formation in vivo and thus 
constitute possible therapeutic targets. A role for these 
MIC markers in metastases formation is further suggested 
by their frequent expression and functions in cancer stem 
cells of various entities [130, 136-140].

In the following, the above mentioned markers 
as well as additional, classical molecular targets will be 
discussed in light of their expression and availability on 
systemic cancer cells.

Epithelial cell adhesion molecule EpCAM

EpCAM is, to date, the antigen of choice for 
the enrichment of CTCs out of the blood of patients 
[141]. The US food and drug administration approved 
the CellSearchTM system relies on capturing CTCs via 
EpCAM-specific antibodies, and subsequent detection of 
DAPI positive, cytokeratin positive and CD45 negative 
objects [47, 52, 129]. 

Although EpCAM has great value for the capturing 
of CTCs from the blood of patients, drawbacks relate 
to its long assumed continuous expression in all phases 
of tumor progression, including circulating tumor cells. 
This assumption was based on the alleged constant 
expression of the molecule in primary tumors and actually 
represented a best candidate approach to enrich malignant 
epithelial cells from blood at the time CellSearchTM was 
developed. EpCAM displayed epithelial specificity 
as well as frequent and high expression in numerous 
carcinomas [142, 143]. However, it is nowadays clear 
that EpCAM is subject to dynamic changes in expression 

throughout tumor progression, including changes related 
to mesenchymal transitions [11]. EMT and its reversion 
MET emerged as major driving forces that underlie 
phenotypic changes during tumor progression [107-109, 
144] (Figure 1). Despite the knowledge that the expression 
of typical epithelial markers involved in cell adhesion and 
proliferation such as E-cadherin [145, 146] are lost with the 
induction of EMT [147-149], the possibility of a dynamic 
expression of EpCAM surfaced only more recently [11]. 
In fact, EpCAM can be lost on CTCs of various entities 
[12, 35, 150-153] as well as on DTCs [10], and CTCs 
enumeration might necessitate an upwards revision, as 
reported recently [16, 35, 152, 154, 155]. Whereas 15% 
of metastatic lung cancer patients displayed ≥5 EpCAM-
positive CTCs in 7.5mL of blood, the percentage raised 
to 41% when taking EpCAM-negative cells into account 
[150]. Down-regulation or even complete loss of EpCAM 
in CTCs and DTCs might not only reflect ongoing EMT 
in these cells. Indeed, EpCAM functions as a central 
molecule in signaling, migration, regulation of cell cycle 
progression and tumorigenicity [156-159]. Active loss of 
EpCAM cell surface expression through endocytosis was 
seen in cells initiating migration [10, 160, 161]. Further 
analyses revealed increased migration and invasion of 
EpCAM-negative/low cancer cells [10, 162], which was 
however contradictory to reports on increased migration 
and invasion in the presence of EpCAM [163-166]. 
EpCAM-positive/high cancer cells were characterized 
by increased tumorigenicity, enhanced proliferation and 
diminished sensitivity towards growth factor deprivation 
[139, 156, 158, 159, 165, 167, 168]. Oncogenic potential 
of EpCAM is initiated via regulated intra-membrane 
proteolysis that generates a signaling active intracellular 
domain termed EpICD, which increases transcription of 
cell cycle and pluripotency regulators [156, 158, 160, 169-
172]. Ultimately, EpCAM was recognized as a membrane 
protein that is strongly overexpressed in cancer stem cells 
of all major carcinoma entities [136, 137]. A contribution 
of EpCAM to “cancer stemness” is further conceivable 
given its capacity to stimulate pluripotency of embryonic 
stem cells [171, 173].

Thus, EpCAM emerged as a switch between 
traits of epithelial and mesenchymal cells. Interestingly, 
EpCAM-positive DTCs of esophageal cancer patients 
strongly associated with lymph node metastases and poor 
OS, but represented a minority in these patients, with 
approximately two-thirds bearing EpCAM-negative DTCs 
[10]. MICs defined in breast cancer patients expressed 
EpCAM strongly [46], so that EpCAM-positive CTCs 
constitute therapeutic targets. However, EMT switches 
were observed in primary tumors of breast cancer 
patients and even more so in CTCs [25]. Appearance of 
mesenchymal CTCs (EMT-CTCs) in patients correlated 
with disease progression and a resistance towards 
chemotherapy [25, 26]. Similarly, EMT-CTCs correlated 
with poorer OS in a small cohort of HNSCC patients 
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[174], which might be explained by different capacities of 
epithelial and mesenchymal cancer stem cells in HNSCC 
[162].

Hence, EpCAM expression on primary tumor 
cells but also on CTCs might activate proliferation and 
tumor initiation at distant sites, and is a novel parameter, 
whose measurement might represent a surrogate for 
differing phenotypic states of cancer cells (Figure 2). In 
fact, EpCAM expression is dynamic and not steady as it 
was long assumed. In this respect, antigen-independent 
isolation of CTCs and DTCs becomes highly relevant 
in order to assess and study varying phenotypes of 
these cells in tumor progression, recurrence, metastases 
formation and treatment responses. Various recent CTC 
isolation and/or enrichment technologies have taken this 
notion into consideration and isolate CTCs through size 
and filtration separation [39, 175] or upon depletion of 
hematopoietic cells and assessment of cellular ploidy, as 
well as tumor biomarker expression [176, 177]. The later 
technique termed with iFISH combines the determination 
of polyploid tumor cells using chromosome enumeration 
probes with phenotypic immunofluorescence detection of 
markers of choice. Diversified subsets of CTCs or DTCs 
may possess distinct clinical significance in terms of drug 
resistance, cancer metastases and disease relapse [178].

Knowledge of EpCAM expression on CTCs and 
DTCs in the bone marrow could reveal of clinical and 
therapeutic importance, since existing monoclonal and 
recombinant antibodies (Panorex, MT201, MT101, ING-
1) might experience a revival for the systemic targeting 
of tumorigenic CTCs and DTCs. Furthermore, small 
molecule inhibitors of EpCAM signaling addressing its 
cleavage could be envisaged in combinatorial therapies. 
Last but not least, determination of the epithelial versus 
mesenchymal status of CTCs and DTCs might represent a 
surrogate marker for therapy response and recurrence [25], 
which could be repeatedly assessed in peripheral blood in 
clinical routine.

EPIDERMAL GROWTH FACTOR 
RECEPTOR 2 HER2

HER2 has become a central therapeutic target. 
Treatment with monoclonal antibodies or small molecules 
is currently a routine intervention for metastatic breast 
cancer patients expressing high levels of HER2 in primary 
tumor cells as measured upon the HercepTest™. HER2 
is a receptor tyrosine kinase involved in regulation of 
cell proliferation and apoptosis via MAP-kinases, PI3/
AKT and the mTOR pathway [179-184]. Opsonization of 
HER2-positive cells and functional inhibition of HER2 
with therapeutic antibodies and small molecule inhibitors 
proved beneficial for node-negative and -positive as 
well as metastatic breast cancer patients [9, 185, 186]. 
HER2high patients treated with Trastuzumab displayed 
a 12% increase in OS and a 33% reduction of the risk 

of death [186]. Owing to the longest history and most 
comprehensive knowledge [187], the impact of HER2 
expression on CTCs with respect to disease outcome, 
as well as a benefit from anti-HER2 therapy for patients 
with HER2-positive CTCs were assessed. The prognostic 
value for the presence of CTCs with respect to OS was 
confirmed and stratification according to HER2 expression 
on CTCs was performed. Cut-off was set at > 30% of CTCs 
expressing HER2, which clearly correlated with response 
to treatment. Patients undergoing anti-HER2 treatment and 
bearing HER2-postive CTCs had significantly prolonged 
progression-free survival (8.8 versus 2.5 months) [188]. 
Furthermore, anti-HER2 treatment was efficient since 
patients bearing HER2-positive CTCs but left untreated 
had a very poor progression-free disease (1.5 versus 8.8 
months) [188].

Potential benefit of targeting HER2-positive CTCs 
in patients is further addressed in the DETECT III study 
(NCT01619111). In this ongoing multi-center, randomized 
phase III study, metastatic breast cancer patients with 
initially HER2-negative primary tumors but HER2-
positive CTCs are treated with standard therapy alone or 
standard therapy combined with Lapatinib treatment (anti-
HER2/EGFR inhibitor). 711 out of 1123 HER2-negative 
patients enrolled in this study had measurable CTCs counts 
after EpCAM-mediated enrichment, and 134 patients had 
at least one HER2-positive CTCs in 7.5mL blood. This 
represents a percentage of discordance of primary tumor 
versus CTCs of 18.8%. Other research groups similarly 
reported on such discordance in expression profiles 
[12-14, 189]. Stratification of patients into subgroups 
demonstrated a strong and significant association of 
HER2-positive CTCs with hormone receptor-positive 
and lobular breast cancer. Assessment of the efficacy of 
Lapatinib treatment in addition to standard care is ongoing 
and highly anticipated.

Hence, anti-HER2 therapy, which is already 
in clinical routine for breast cancer patients, clearly 
demonstrated the power of molecular analysis and 
targeting of CTCs in the control of metastatic disease and 
is very encouraging.

Epidermal growth factor receptor EGFR

EGFR is, similarly to HER2, a major target 
for targeted therapies via monoclonal antibodies and 
inhibitors [190], which belongs to the same receptor 
tyrosine kinase family [191-194]. In fact, EGFR is the 
founding member of this family of signaling receptors, 
which was discovered in 1978 [195]. EGFR signaling 
is broad and comprises differential activation modes 
through ligand induced phosphorylation and interaction 
with a multitude of intracellular pathways such as 
MAP-kinases, phospholipase C, phosphatidyl-inositol-3 
phosphate kinase, small GTPases, and JAK/STATs 
[193, 196, 197]. Thereby, EGFR activation stimulates 
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proliferation, migration, angiogenesis, differentiation, 
survival, cancer formation and progression [198, 199]. 
Besides classical signaling via phosphorylation-induced 
activation of downstream targets, EGFR was demonstrated 
to translocate into the nucleus and to activate transcription 
through association with target gene promoters [200-203]. 
Additionally, EGFR is subject to proteolytic cleavage at 
the membrane by members of the metalloproteinase and/
or rhomboid protease family to generate an intracellular 
domain (ICD), the actual function of which remains 
undescribed [204-206].

Since anti-EGFR antibodies are part of late 
stage therapies, the status of EGFR-positive CTCs was 
assessed with the purpose to measure therapy responses 
to Cetuximab and to inquire a potential use of EGFR 
therapeutic antibodies for the eradication of CTCs [207-
209]. In colorectal cancer patients, great intra- and inter-
patient heterogeneity was observed at the level of EGFR 
expression and mutation status, which might explain 
differences in treatment responses [207]. Although intra-
patient variance represents an issue, the actual expression 
of EGFR on CTCs consolidates the strategy of CTCs 
targeting through biological and small molecule inhibitors 
already available on the market. Current research 
though focuses on the detection of EGFR mutations in 
CTCs and ctDNA, as surrogate markers for monitoring 
purposes rather than stratification means for subsequent 
anti-EGFR therapies. These efforts have peaked in the 
launch of a specific test of EGFR mutation in ctDNA 
called Selector™. Additional studies reporting on steady 
expression levels of EGFR in breast cancer patient-derived 
CTCs [210], as well as an eradication of EGFR-positive 
and -negative CTCs following gefitinib treatment [211], 
further support the concept of antigen-specific targeting 
of CTCs. However, remaining CTCs in these breast 
cancer patients revealed negative for EGFR, which 
pinpoints at possible escape mechanisms that could be 
addressed through the use of multiple targeted treatments. 
Furthermore, radiotherapy reportedly increased numbers 
of EGFR-positive CTCs in locally advanced head and 
neck squamous cell carcinomas (HNSCC), which could 
be counteracted upon treatment with anti-EGFR antibody 
Cetuximab [32]. EGFR was associated with an EMT 
phenotype of non-metastatic breast cancer patients’ CTCs, 
which co-expressed markers of mesenchymal cells such 
as vimentin and slug [212]. Hence, although somewhat 
unexpected, EGFR might be a positive regulator of EMT 
processes observed in subsets of CTCs, which are selected 
upon radiotherapy. However, numbers of HNSCC patients 
enrolled in CTC enumeration and EGFR evaluation was 
comparably small (n = 31) and further validation in larger 
cohorts is necessary.

Comparably to HER2, anti-EGFR antibodies and 
small molecule inhibitors are approved for clinical use 
for colorectal, head and neck squamous cell carcinomas 
(HNSCC) and non-small cell lung cancer. Both, HER2 and 

EGFR are therefore interesting targets to therapeutically 
address systemic disease that have already proven 
beneficial for cancer patients. Even more so, a combination 
of HER2- and EGFR-specific drugs appears valid since 
HER2 signaling emerged as one major route of resistance 
to Cetuximab, suggesting that Trastuzumab or equivalents 
could help overcoming resistance [213].

Hyaluronic acid receptor CD44

CD44 in fact designates a family of more than 
20 differing transmembrane proteins that are generated 
from the single CD44 gene through extensive alternative 
splicing of 10 out of 20 exons, as well as post-translational 
modifications [214-216]. CD44 has multiple functions in 
adhesion to extracellular matrix, cytokines and growth 
factors presentation, migration and differentiation, cell and 
nuclear signaling [217-223]. Early on, expression of splice 
variants of CD44 such as CD44v6 was shown to stimulate 
metastases formation and was in the focus of cancer 
research [132, 133, 224, 225]. Further interest arose with 
the description of CD44 as a marker for cancer stem cells 
in various carcinoma entities including breast [131], colon 
[226], hepatocellular carcinomas [227], head and neck 
[228], lung and pancreatic cancers [229, 230]. Reasons 
for this recurrent expression of CD44 in tumor initiating 
cells of various malignancies including hematopoietic and 
epithelial cancers have been reviewed in depth and relate 
to the various roles mentioned above [130]. Eventually, 
CD44 must be considered as a signaling platform, which 
not only activates cell adhesion and migration through 
binding of ECM components, but also on proliferation, 
apoptosis, angiogenesis, differentiation and regulation 
of stemness through the activation of multiple pathways 
such as Wnt/ß-catenin, NF-κB, Src and PKC kinases, Rho 
GTPases [130, 138, 231]. As such, CD44 enables cells 
to react and respond to cues from the microenvironment, 
inducing a stem cell phenotype including the expression of 
stemness factors and the regulation of traits of metastatic 
cells [220, 221].

In their seminal work on MICs in breast cancer, 
Baccelli et al. provided the first translation of markers 
of cancer stem cells to a subpopulation of metastases-
inducing CTCs, thus providing a MICs signature [46]. 
They combined the function of CD44 in metastases 
formation with its strong and frequent expression on CSCs 
to demonstrate for the first time the presence of CD44 on 
MICs. Thereby, CD44 became a potential target candidate 
for the eradication of MICs upon adjuvant therapies 
comprised of CD44-specific antibodies. Approaches to 
target acute myeloid leukemia cells using the monoclonal 
pan-CD44 antibody H90 proved very efficient [232], and 
might give a basis for future application in the eradication 
of MICs. However, given the potential of CD44-specific 
antibodies to target antigen-positive hematopoietic cells, 
knowledge of splice variants preferentially expressed on 
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CTCs, and especially on MICs, would help designing 
therapeutics with an effectiveness more restricted to 
CTCs. In this respect, the expression of a sialofucosylated 
glycoform of CD44 termed HCELL for hematopoietic 
cell E/L-selectin ligand on tumor cells is of great interest. 
HCELL is a major ligand for both selectin subtypes, which 
allows the interaction of tumor cells with endothelium, 
leukocytes and platelets and might thus trigger intra- and 
extravasation of CTCs in and out of vessels during tumor 
progression [233, 234]. Therapeutic blockage of HCELL 
on CTCs, given its expression, would represent an elegant 
way to prevent dissemination and metastases formation.

In homology to EpCAM, HER2, and EGFR, all 
attempts to target CD44 on CTCs will depend on thorough 
knowledge of expression profiles. Thus, future clinical 
studies should optimally implement measurements of 
CD44 expression on CTCs.

Hepatocyte growth factor receptor c-Met and 
Integrin-associated protein CD47

cMet and CD47 are emerging markers of importance 
owing to their capacity to foster migration and invasion 
[135] and control cells of the innate immune system 
[235], respectively. Luminal breast cancer patients 
harboring cMet/CD47-positive CTCs were at high risk 
of metastatic spread. Accordingly, double-positive CTCs 
displayed substantial ability to develop metastases in 
mouse models [78, 236]. The CellSearchTM platform 
was modified to enrich for c-Met-positive CTCs, which 
were rare according to this study and might restrain the 
use of inhibitory monoclonal antibodies and inhibitors 
that are currently in clinical testing [237, 238] (http://
meetinglibrary.asco.org/content/140112-158). Besides 
MICs in breast cancer, CD47 was strongly expressed 
on CTCs from colorectal cancer patients and might act 
as antagonist of innate immune cells during circulation 
[239, 240]. Hence, CD47 and c-Met are of great interest 
for therapeutic targeting of systemic cancer, but clearly 
require more in-depth analysis of expression and function 
on CTCs to warrant therapeutic addressing.

Programmed cell death protein 1 PD-1 and its 
ligand PD-L1

PD1 and PD-L1 is a receptor-ligand pair of 
membrane proteins expressed on immune cells (T, B, 
macrophages, natural killer and myeloid cells), endothelial 
and epithelial cells [241]. Activation of PD-1/PD-L1 
signaling results in immune suppression through inhibition 
of ZAP70 and protein kinase C variants in T cells [242-
244]. PD-L1 is increased in carcinoma cells of numerous 
entities, and, as such, enables tumor cells to dampen 
activated T cell responses, thereby initiating cancer 
immune evasion [241, 245, 246]. Accordingly, expression 

of components of the PD-1/PD-L1 axis, also termed PD 
pathway, correlated with poor prognosis and survival of 
carcinoma patients [247]. Therapeutic inhibition of the PD 
pathway displayed great potential to reactivate immune 
cells and induce long-lasting remissions [244, 248, 249]. 
Thus, PD treatment represents one of the most promising 
cancer therapies of the moment [241, 250-252], with 
checkpoint inhibitors comprising both, PD-1 and PD-
L1 targeting therapeutic antibodies in clinical trials (see 
Tables 1-4 in [252]).

Importantly, PD-L1 expression was demonstrated 
on CTCs in various carcinoma entities including breast 
[253, 254], oral [255], colorectal and prostate [256], 
lung cancer (http://meeting.ascopubs.org/cgi/content/
abstract/34/15_suppl/e23036). Interestingly, Satelli et al. 
used the cell-surface vimentin (CSV)-specific antibody 
to isolate EMT-CTCs and demonstrated differing sub-
cellular localization of PD-L1. Nuclear localization of 
PD-L1 in EMT-CTCs was associated with poor prognosis 
of colorectal and prostate cancer patients [256]. For the 
case of ovarian cancer, expression of PD-L1 in primary 
tumors correlated with peritoneal dissemination and the 
generation of ascites, suggesting a role for PD-L1 in the 
inhibition of cytotoxic T cells and dissemination, which 
was confirmed in mouse models [257].

Hence, PD-L1 expression on CTCs has once more 
dual potential for the identification of patients likely to 
respond to PD treatment in the context of liquid biopsies 
and as therapeutic target to reactivate the immune system 
towards systemic cancer cells.

CONCLUSIONS

Metastasis is the major thread for cancer patients 
and, despite progress in the era of molecular therapy, 
remains incurable in most cases. Surgical options for the 
removal of metastases are limited and systemic treatment 
has been so far rather ineffective. Research on molecular 
mechanisms involved in metastases formation suggested 
a central role of circulating and disseminated tumor cells. 
The majority of evidence supports the notion that CTC-
based molecular analysis has the potential to provide 
real-time and non-invasive surrogates to enable better 
diagnostics, prognostication, and prediction. Subsets of 
CTCs expressing cell surface markers EpCAM, CD44, 
CD47 and c-Met were capable of initiating metastases 
in animal models [46] and hence, these seminal findings 
might pave the way for novel strategies in cancer therapy 
because potential targets of therapy, both cellular and 
molecular, become apparent (Figure 3). It must however 
be noted that a formal proof of the metastatic capacity of 
CTCs subpopulations has to the best of our knowledge 
only been given for metastatic breast cancer and small cell 
lung cancer, and is thus lacking for other entities.

Currently, cancer patients are eligible for adjuvant 
therapies targeting cell surface antigens such as HER2 and 
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EGFR, primarily in late stages of disease, when metastases 
have already developed or tumors relapsed. Clinical 
interventions might profit from monitoring CTCs and the 
repeated analyses of the expression of molecular targets 
such as HER2, EGFR, EpCAM and PD-L1 on CTCs 
during the course of targeted therapies. Based on these 
analyses, early application of therapeutic agents targeting 
markers on MICs could be considered and clinically 
addressed. A basic requirement is to have reliable assays 
at hand that deliver such data. In view of the plethora 
of promising available assays, it is therefore of utmost 
importance to standardize and validate such assays. This 
is currently addressed for lung cancer and a breast cancer 
subtype by a large EU/IMI consortium (www.cancer-id.
eu). Similar initiatives must be extended to other cancer 
types and, especially, to the adjuvant situation. 
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